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Abstract. The purpose of this article is to propose a simple framework for the various decomposition 
schemes in mathematical programming. 

Special instances are discussed. Particular attention is devoted to the general mathematical 
programming problem with two sets of variables. An economic interpretation in the context of 
hierarchical planning is done for the suggested decomposition procedure. 

The framework is based on general duality theory in mathematical programming and thus focussing 
on approaches leading to global optimality. 
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1. Introduction 

Decomposition procedures have had a profound influence in mathematical pro- 
gramming since they were introduced by Benders [l] and by Dantzig and Wolfe 
[2]. They have given rise to a long range of suggestions for improvement in the 
design of algorithms for the solution of large scale mathematical programming 
problems. Perhaps even more importantly, they have had a tremendous impact on 
quantitative modelling of decision making in hierarchical structures. See for 
example Dirickx and Jennergren [3], Burton and Obel [4] and Obel [5]. Here a 
hierarchy typically consists of a central unit and one or more subunits with 
communication lines between the central unit and the subunits. For example in 
the decomposition scheme given by Dantzig and Wolfe the objective of the 
central unit is to announce prices for the subunits for their utilization of joint 
resources. In this way the subunits need not know the actual limits of the joint 
resources. On the other hand the subunits quote suggestions for the utilization of 
joint resources together with their contribution to an overall objective. Hence, 
the central unit needs no information about technical constraints that are local for 
each subunit. This is the basic structure that is utilized in an iterative process. 
Originally and in most applications linearity is assumed in the part of the cost and 
technical structure that interact between the central unit and the subunit. 
Technically this means that the interaction is modelled by linear programming and 
the price information for joint resources is obtained from the dual variables in the 
actual linear model. 

The purpose of the present article is to develop a similar but more general 
decomposition procedure that does not require linearity. The main tool for doing 
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this is to replace linear programming duality by duality in general mathematical 
programming. The article demonstrates that in this way it is possible to develop a 
decomposition procedure while still keeping all the main principles unchanged. In 
particular the usual economic interpretations carry over to this general setting. 
The main idea for this is to replace the prices, given by the dual variables, by the 
more detailed cost information provided by dual functions considered in general 
duality theory. 

It is emphasized that since the suggested procedure is based on these more 
detailed functions the approach does not limit itself to the consideration of only 
local optima. Hence the procedure should be considered as a global optimization 
approach for mathematical programming. 

Some progress has already been made in this direction. Geoffrion [6] and 
Holloway [7] have discussed procedures based on convex programming. Wolsey 
[S] discusses a generalization of Benders’ procedure. Burkard, Hamacher and 
Tind [9] consider the separable case. For an overview and some further results, 
see Flippo [lo]. 

The remaining part of the paper is divided in sections as follows. 
Section 2 restates some basic results from duality in general mathematical 

programming to be used in the later sections. 
Section 3 presents the basic decomposition scheme. This is based on a very 

simple max-min model. Due to its simplicity and generality it is believed to be an 
appropriate choice of model. It is important to note that the decomposition 
procedure provides improving lower and upper bounds for the objective function. 
They are of significance in convergence considerations, in particular in case of 
premature interruption of the procedure. 

Section 4 deals with decomposition of a general mathematical programming 
model with two sets of variables. The suggested approach is a special case of the 
procedure in Section 3. An alternative procedure for this model can be found in 
Flippo [lo], based on an expansion in the dimension of the dual solution space. 

In Section 5 we present an economic interpretation of the model and the 
procedure in the previous section. Section 6 gives a description of the simplifica- 
tions obtained in case of separability in the objective function and in the 
constraints. Section 7 discusses how the cross decomposition procedure by Van 
Roy [ll] can be derived. Section 8 concludes the article with some final comments 
and remarks. 

For convenience in notation sup is used at most places instead of max. This is 
done in order to get always an optimal value of the objective function. A similar 
remark applies to inf and min. 

2. General Dual Programs 

The purpose of this section is to present some fundamental definitions and results 
about duality in general mathematical programming which will be used in the next 
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sections. The results are taken from Tind and Wolsey [12] which also contains the 
proofs and other details which are omitted here. 

Let X and Y be arbitrary nonempty sets and consider a function K(x, y): 
Xx Y+ R u {+m} U {--03). 

We state the following program as the primal program 

(P) 

Let z(x) = inf,,, K(x, y). We speak of a feasible solution x, of (P) with value 
z(x,) if x, E X and 2(x,) > - m. Furthermore, x, is an optimal solution of (P) if it 
is feasible and if 2(x,) = ~up,~x z(x). 

By transposition of the operators sup and inf we shall also consider the dual 
program 

w = i&l; sg zqx, y) . CD) 

Let w(y) = sip xtX K(x, y). Similarly y, is feasible in (D) if y, E Y and 
w(Yo)<m. Moreover, a feasible solution y, is optimal in (D) if w( y,) = 
infym NY>. 

This terminology is in concordance with the conventional terminology applied 
in mathematical programming. Consider for example a standard mathematical 
programming problem 

SUP f(x) 
s.t. g(x) < b 

XEX~R”) 
(2.1) 

where f:lR”+R, g:R”+R” and bEW. Let K(x, y) be the corresponding 
standard Lagrange function, i , e., K(x, y) = f(x) - yg(x) + yb where y E Y = 58:. 
In this setting (P) and (2.1) are equivalent programs. In particular x E X is 
feasible in (P) if and only if x E X is feasible in (2.1) in the conventional sense, 
i.e., g(x) 6 b. The program (D) becomes the standard Lagrangean dual of (2.1). 

We always have weak duality between (P) and (D), i.e., 2(x,) G w( y,) for all 
(x,, y,) E X X Y. We speak of strong duality when there is no duality gap 
between (P) and (D), i.e., when z = w. 

We shall here restate some results from general duality to be used in the 
following sections. 

Consider again the general mathematical programming problem (2.1). Let 9 
denote a selected class of nondecreasing functions F: R”-t R U {+m} U {-co} 
and consider with this class a generalized Lagrange function of (2.1): 

K(x, F) = F(b) - F( g(x)) + f(x) . (2.2) 

Consider also the dual of (2.1) written in the form 

inf F(b) 
FE9 

s.t. F( g(x)) a f(x) Vx E X . (2.3) 
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Here we shall summarize some fundamental relationships between the above 
programs into the following 

PROPOSITION 2.1. Let Y = 9, XC IR” and define K(x, 8’) by (2.2). We can 
then select an appropriate class 9 of functions so that 

(i) (2.3) and (D) are equivalent and 
(ii) strong duality exists between (P) and (II). 

An appropriate selection of the class @depends on the actual program. The aim is 
of course to select the class as simple and small as possible. This question is 
fundamentally the same as asking for an efficient algorithm to find an optimal 
solution of (2.1) and to prove optimality via the construction of an optimal 
solution F in (2.3). For details see Tind and Wolsey [12]. 

3. Decomposition 

Here we shall attempt to solve (P) by a decomposition approach. The underlying 
procedure is a direct generalization of the procedures originally developed by 
Benders [l] and by Dantzig and Wolfe [2]. 

Let Y c Y and consider the following problem called the upper problem: 

Z = sup inf K(x, y) . 
XEX YEY 

(U) 

Since t > z we obtain that (U) produces an upper bound for the optimal value 
2 of (P). 

Similarly, let X c X and consider the following lower problem: 

w = inf sup K(x, y) . - 
YEY XEX 

CL> 

This problem produces a lower bound for the optimal value w of (D). 
Under appropriate conditions w is also a lower bound for (P) (or similarly Z an 

upper bound for (D)) as demonstrated by the next two remarks. 

REMARK 3.1. If X contains only one element x” E X, i.e., {x*} = X, then 
w = inf,,, K(x*, y) G supxEx inf,,, 
for (P). 

X(x, y) = z. Hence, Eli is also a lower bound 

REMARK 3.2. If z = w, i.e., strong duality holds between (P) and (D), then 
z = w 5 w. Hence, w is also a lower bound for (P) in this case. 

In the following procedure we shall set up specifications for the generation of the 
subsets X and Y. The procedure is iterative. The iterations are enumerated by an 
iteration counter k. Now, introduce a map k(k) : N ---, 9(X), where 9(X) denotes 
the set of subsets in X. Let X = 2(k) in the kth iteration. Similarly, introduce a 
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map ?((k) : N+ 9(Y) and let Y = Y((k) in the kth iteration. Let u, 1 E [w U 
{ +m} U {-w} be the best upper and lower bounds, respectively, to be updated 
during the procedure. 

ASSUMPTION 3.1. In the following procedure we assume that (L) provides a 
lower bound for z. This assumption is for example fulfilled subject of the 
conditions stated in Remarks 3.1 or 3.2. 

Now the basic procedure can be stated as follows. 

Start : Let X c X and Y C Y be nonempty. 
:Let u=+m, I=-00 andk=l. 

Step 1 :Solve (U). Update u :=min{u, Z}. 
Let X = X(k). 

Step 2 : Solve (L). Update I := max{ 1, VV}. 
Let Y= ?(“(k). 

Step 3 : If u = I then stop. Otherwise, let k := k + 1 
and go to Step 1. 

Observe that the entire setup is symmetric in x and y. Hence, an equivalent 
procedure can be established for (D) as well. 

If, in step 1, Z= --CQ then (U) is infeasible. Hence, (P) is also infeasible, and 
the procedure will stop in Step 3 as u = I= --w. This situation will be discovered 
during the first iteration. 

Assumption 3.1 is used in Step 3 to ensure that z = u = I at termination. 
We have to find appropriate specifications of the sets X and Y to ensure 

convergence. In order to obtain this goal we can state the following 

PROPOSITION 3.1. If 

(i) SUP,,~ inf,,, K(X, y) = supxEx inf,,, K(x, Y) and 
(ii) infYEY supxe~ K(x, y) = inf,,, sup,,x G, y) 

then Z = w. 
Proof. By definition E = SUP,,~ inf,,, K(x, y) and II! = inf,,, sup,,~ K(x, y). 

By Assumption 3.1, Z 2 2 3~. Since, generally, sup,=~ inf,,, K(x, y) 6 infyEY 
SUP,,~ K(x, y) we get by (i) and (ii) that Z G w. Hence, Z = z = w. 0 

The conditions (i) and (ii) express that it is sufficient to consider the subsets 
X C X and Y C Y to ensure convergence. Typically, the sets X or Y are expanded 
or otherwise changed during the iterations of the procedure by the maps g(k) or 
Y(k) until the conditions (i) and (ii) are satisfied. The objective is of course to 
make any expansion and the number of changes as small as possible to facilitate 
the computational work and still have convergence. 

Before we are going to look at some more general problems let us, for 
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completeness, show that the Dantzig-Wolfe decomposition procedure is a special 
case of the above procedure. 

EXAMPLE (Dantzig-Wolfe decomposition in linear programming). We let 
X(x, y) = cx - yA,x + yb,, where A, ER”““, b, E R”. Let also Y = [FBY and 
X= {x E rW: ] A,x s b2} where A, E !Rqxn and b, E Rq. 

For simplicity we assume here that the problems (L) and (U) always possess an 
optimal solution. Let xk denote the optimal solution of (U) during the kth 
iteration. Let_ X(0) = 0 and update X(k) recursively by X(k + 1) = X(k) U x”. 
Further, let Y(k) = yk where yk is an optimal solution of (L). 

With this terminology (U) gets the form 

sup cx - ykA,x (+ykb,) 
x 

s.t. A,x s b, 

X20 

in the kth iteration. 
Let u E R. Then, in the kth iteration (L) gets the form 

inf u 
yro 

s.t. u>cx’-yA,x’+yb, for i=l,. . . ,k 

or by linear programming duality 
k 

sup c h,cx’ 
4 i=l 

k 

s.t. c hiAIxis b, 
i=l 

2 ‘i=l 

A,>0 for i=l,...,k. 

(3.1) 

(3.2) 

The programs (3.1) and (3.2) are here recognized as the subproblem and the 
master problem, respectively, considered in the classical Dantzig-Wolfe decom- 
position procedure applied on the problem 

sup cx 
s.t. A,x s b, 

A,x =s b, 

x20. 

4. Variable Decomposition in General Mathematical Programming 

This instance considers the Benders’ decomposition principle in a more general 
context than originally introduced in Benders [l]. A major step in this direction 
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has been taken by Geoffrion [6] and [13]. Further important steps have been done 
by Wolsey [8] who first presented a general procedure of this type. It is our 
purpose here to derive such a procedure as a special case of the procedure in 
Section 3. 

ForxER”,uEIWPdefinef(x,u):IW”x[WP-f[Wandg(x,u):[W”x[WP~bE[Wm. 
Let X c R” and U C Rp. We can now consider a general mathematical programming 
problem with two sets of variables: 

sup f(X> u) 
s.t. g(x, u) 6 b (4.1) 

XEX 

UEU. 

We are going to solve this fairly general program by means of the decomposi- 
tion procedure in Section 3. 

Separate (4.1) into 

sup f(r, u) 
?i? g(x, u) 6 b . 1 (4.2) 

For flxed x we are going to consider the inner optimization problem in u of 
(4.2) and on this problem we shall use the duality theory considered in Section 2. 
Hence, we establish the generalized Lagrangean as created by (2.2). We shall 
further aSSume that we have selected the class 9 big enough to use Proposition 2.1 
for any fixed x. In this way (4.2) is rewritten into 

(4.3) 

We are going to apply the decomposition procedure on (4.3). So in this case 
Y = 9 and K(x, F) = F(b) + supuELI (-F( g(x, u)) + f(x, u)). Furthermo_re, let x* 
be an-optimal solution of (U) in Step 1 at the kth iteration and let X = X(k) = x*, 
i.e. X is equal to the latest optimal solution. Let also F* denote an optimal 
solution of (L) in Step 2 and let Y = ?(:(k) = 9, where 9 : = % U F*. That is .% is 
increased by the latest optimal solution. 

If an optimal solution in (L) or (U) does not exist, the procedure must be 
modified along the lines that are usually followed in the case of linear program- 
ming. For example, this would replace an optimal solution by an extreme 
direction in case of unboundedness, etc. 

With these specifications program (U) becomes 

2 = ,“ipx jnf, [F(b) + ypu (- Ft gk UN + fk u>)l . (4.4) 

This is a direct generalization of what in the Benders’ decomposition procedure 
is denoted as the master problem. 

The problem (L) takes the form 
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l.f = jgf, [F(b) + sup (-F(&*, u)) +f(x*, u))l , 
UEV 

(4.5) 

which is a generalization of the standard form of the subproblem in Benders’ 
decomposition. 

We note that since X = {x*} we get by Remark 3.1 that Assumption 3.1 is 
fulfilled in the present case. 

We also note that X= {x*} implies satisfaction of (i) in Proposition 3.1. Hence, 
by this proposition the procedure stops if (ii) is satisfied, too, i.e. if 

jnf, qx*, Y> = $ K(x*, Y) . (4.6) 

This equation expresses that the current selection g c 9 is sufficient to ensure 
the optimality of x* in (4.3) and hence in (4.1). In other words, all the optimal 
solutions of (4.5) obtained so far and which all have been included in .% are 
enough to prove the optimality of x*. In particular if 9is finite then (4.6) must be 
true at some iteration. Hence in this case the procedure terminates after a finite 
number of steps. This is a frequently used argument for finite convergence and, as 
shown here, it can be used also in a very general setting. 

A further criterion for termination is given in the following proposition. 

PROPOSITION 4.1. The procedure terminates if 

F( g(x, u)) s f(x, u), VF E 58, Vx E X and Vu E U . 

Proof. So, let supUEv (-F( g(x, u)) + f(x, u)) s 0 for all x E X and FE i%. 
Then 

F*(b) + f~; t-F*tgk ~1) +f(x, u>> =s F*(b) 

for all x E X and F* E $? 
This implies that 

fi$ [F(b) + fz; (-F(dx, u>> + f(x, u)>l ss F*(b) 

for all x E X and F* E z%. 
Hence 

Z = sup inf [F(b) + sup (-F(g(x, u)) + f(x, u))] G F*(b) 
XEX FE@ UEU (4.7) 

for all F* E 5% 
NOW, consider the following program 

w = jnf, F(b) 

s.t. F(g(x*, u)) a f(x*, u) Vu E U . (4.8) 
From our continuing assumption about the selection of 9 we obtain by 

Proposition 2.1, part (i), that (4.5) and (4.8) are equivalent programs. The 
updating procedure of the lower bound I therefore implies that F*(b) = w s I for 
all optimal solutions of (4.5). Similarly, the updating procedure of the upper 
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bound implies that t Z= u. Hence, by (4.7) F*(b) 3 u. Since in general 1 G u we 
obtain I = F*(b) = u and the procedure terminates. 0 

5. An Economic Interpretation of the Procedure 

We shall give an economic interpretation of the procedure in the setting from the 
previous section. This will be done within the usual activity analysis framework. 
The problem here consists of two units in a planning environment. These units 
may be of equal rank of importance. However, in agreement with standard 
literature one unit shall be called the central unit and the other the subunit. In 
most instances it will probably be natural to deal with more subunits, but for ease 
of exposition only one subunit shall be considered here. 

The objective is to solve (4.1) by means of the decomposition procedure where 
x indicates the activity levels to be determined by the central unit. Similarly, the 
subunit determines the level u for its activities. The function f(x, u) indicates the 
overall income. The vector b denotes the capacity of some given production 
factors and g(x, u) denotes the utilization of those capacities for given activity 
levels. 

Here we assume that only the central unit has complete information about the 
set X which restricts the set of feasible solutions. Also the subunit has only 
complete information about the set U for its activities. Additionally, it is assumed 
that the subunit has all information required to compute the inner part of (4.2) 
for any given activity level x. However, instead of performing this computation 
for all potential activity levels at the central unit, the subunit provides cost 
information for these levels. This cost information is provided by the cost function 
F* generated by the subunit as the solution of the lower problem in the form 
(4.5). 

Since F* in each iteration is going to be included in $, the central unit increases 
its cost information in this way. Based on this information new suggestions x* for 
activity levels are proposed via the solution of the upper problem in the form of 
(4.4). In particular, if termination has not yet occurred then-there exists by 
Proposition 4.1 an activity level x E X and a cost function F E 9 such that 

sup f(x, u) - F( g(x, u)) ’ 0 
UEU (5.1) 

The function F(d) can here be interpreted as an estimation of the alternate 
costs for the utilization of a resource vector d E IF!?“. In this terminology (5.1) 
expresses the natural statement that, since termination has not yet occurred, the 
subunit may contribute to an increase in the overall income via a change in x. So 
the procedure continues. 

In order to keep information decentralized, the subunit subsumes in principle 
its knowledge into a function G(x) defined on the activity levels belonging to the 
central unit. G(x) : R” +R! U {+w} U {-co} is given by 
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(5.2) 

@ = {G 1 3 F E $ where G(x) = F(b) + yg (f(x, u) - F( g(x, u)))} . 

In this terminology the problem of the central unit subsumes to 

Hence, in the present interpretation the subunit generates the functions G(x) to 
be used by the central unit. Since the subunit does not know in advance the set X, 
the subunit must in principle compute G(x) by means of (5.2) for all x E R”. This 
might at first sight look laborious. However, taking the generality of the model 
(4.1) into account, this should not be too surprising, since, the relationships 
between the activity levels x and U, given by the functions f(x, U) and g(x, U) can 
be very complicated. In the next section we shall see how the procedure 
simplifies, when more structure is introduced on these functions. 

6. The Separable Case 

This instance which has also been considered in Burkard, Hamacher and Tind [9] 
assumes separability of the objective function and the constraint functions in the 
following way. Let 

f(x, u> = 6) + e(u) 
and dx, u> = W) + k(u) 7 
where c(x) : R” +R, e(u):W--fR, 

h(x) : R” * R” and k(u) : Rp + R”. 

In this setup (P) takes the form 

;zg $I& [F(b) + ~pu (-F(+) + k(u)) + C(X) + e(u))] . 

We shall here see that a direct computation of G(x) for all x as in the economic 
interpretation of (5.2) can be avoided. 

For each x E R” and F E 8 introduce the function F, : R” + IR U { -m} U { +m} 
defined by 

F,(d) = F(d + h(x)) for all d E R” . 

Then F(d) = Fx(d - h(x)) for all x E R” . 
We assume that F, E %for all x. This is not a very restrictive assumption, and is 

satisfied in most cases. In this way (6.1) is converted into 
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or by replacing F, by F into 

Again, by proposition 2.1 (i), (6.2) is equivalent to 

;zg jgf, [Ftb - WN + 441 
s.t. F(k(u)) 2 e(u) for all u E U . 

Define % = {F E 9 1 F(k(u)) Z= e(u)}. H ence (6.2), which is our present form of 
(P), can be stated as 

Application of the decomposition procedure then simplifies the upper problem 
to 

(6.3) 

where 3 c 3, and the lower problem gets the form 

21 [F(b - I@*)) + c(x*)] . 

By direct insertion for example in (P) the actual problem has the form 

sup c(x) + e(u) 

s.t. h(x) + k(u) =s b 

xEX,uEU. 

In an economic context for this problem along the lines from Section 5 x E X 
may typically stand for investment activities to be handled by the central unit and 
u E U may stand for production activities to be handled by a subunit. It is 
observed that this separable case does not require the computation of the function 
G(x) for all x, as defined by (5.2), in order to solve the upper problem as stated in 
the form of (5.3). To solve the upper problem which is performed by the central 
unit, it sufficies here to operate directly with the cost function F. This cost 
function indicates the value of the resources b - h(x*) left over to the subunit. 
Also the subunit needs not to know the currently proposed activity level x*. 
Information about the available resources b - h(x*) suffices together with the 
contribution c(x*) in the objective function. 

It. is the purpose for the central unit via the solution of the upper problem in the 
form of (6.3) to make an economic balance between the investment and produc- 
tion activities based on all currently known cost functions 3. 

If e(u) and k(u) are linear and U c R’P, then we arrive at the original Benders’ 
decomposition scheme based on linear programming duality. So, in this instance it 
suffices to let % contain linear functions. 
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7. Cross Decomposition 

The idea of cross decomposition, as originally proposed by Van Roy [ll], is to 
keep the problems (L) and (U) as simple as possible during the decomposition 
procedure. Let us, for simplicity, assume that (L) and (U) always have optimal 
solutions. Let xk and yk denote the optimal solutions in the kth iteration of (U) 
and (_L), respectively. The_n, the idea is to keep the sets X and Y small by setting 
X = X(k) = xk and Y = Y(k) = yk. Cross decomposition can therefore be de- 
scribed as a coordinatewise search procedure. 

In general, one cannot expect to obtain an optimal solution for (P) with this 
scheme. So occasionally, one has to modify the map g(k) (or F(k)) for example 
to the standard updating procedure for Benders’ decomposition. 

Some special instances are of particular interest because of the attractiveness of 
(U) and (L) in cross decomposition. Consider for example the classical capaci- 
tated plant location problem treated by Van Roy [14] with it plants and m 
markets. For this let dj denote the demand of the jth market. Let si be the 
capacity of plant i and let L be the fixed cost for opening plant i. Let xii denote the 
transportation flow and cij the unit transportation costs from plant i to market j. 
Finally, introduce the binary variable yi so that yi = 1 if plant i is opened, and 0 
otherwise. 

We can now specify the terms of the general procedure. We shall here use max 
and min instead of sup and inf, respectively. Let Al. = ( pl, . . . , CL,) E W: and 
consider 

K(Y, CL) = 2” 2 ,$ (‘ij + djPi)xij - 2 ‘iYiP? + 2 AYi 

s.t. 2 Xii = 1 vj 
i=l 

Osxijsyi Vi, j. 

Further, let Y = {(yi, . . . , y,) ] yi = 0 or l} and X = R:. We will consider the 
problem in the form of (D). Hence, we consider 

(7.1) 

By linear programming duality applied on the inner problem then (7.1) is 
equivalent to 

s.t. g xii = 1 Vj 

2 djxij 6 siyi Vi 
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Yi= y t 
xii 2= 0 

which is the capacitated plant location problem in standard formulation. 
In the cross decomposition scheme for (D) then (L) gets the following form 

with fixed j.~ = p*: 

s.t. i: xii = 1 Vj 
i=l 

OcxijGyi Vi, j 

Yi= i c . 

This is the simple plant location problem. 
The upper problem (U) gets the form with fixed yT: 

q" 2 2 cijxij + 2 &Vi* 
i-1 j=l 

s.t. i: xii = 1 Vj 
i=l 

f$ djxij s siy,* Vi 
j=l 

xii 2 0 

which is a transportation problem, providing the values of the dual variable ~~7 
belonging to the constraints, CyE1 d,x, G siyc!. 

8. Concluding Remarks 

The basic decomposition procedure presented in Section 3 includes many special 
cases, for example the decomposition scheme of Kornai and Liptik [15] for 
block-angular LP-problems. It also includes the extension to general linear 
programming by Holmberg [16] and the various proposals in Holmberg [17]. The 
decomposition scheme for integer programming developed in Holm and Tind [18] 
is included, too. Finally, it should be mentioned that also approaches for 
comparison of different decomposition procedures fit well into the suggested 
framework, for example the comparison performed in Aardal and Ari [19] 
between the Kornai-Liptik and the cross decomposition procedure. 

It all depends on the specific choice of the function K(x, y), the sets X and Y, 
and the updating formulas for 2 = z(k) and y = ?((k). Due to the simplicity and 
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generality it is believed that all decomposition procedures in mathematical 
programming can be derived in this way from the present framework. 

Hence a common basis has thus been established for categorization, com- 
parison and further development of decomposition procedures. 
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